
Appendix F

Self-Concordant Barrier
Functions for Convex
Optimization

F.1 Introduction
In this Appendix we present a framework for developing polynomial-time algorithms
for the solution of convex optimization problems. The approach is based on an
interior-point barrier method. Key to this framework is the assumption that the
barrier function is “self concordant,” a property that we define below. For linear
constraints, the ordinary logarithmic barrier function can be used. It is possible
to prove that, for any convex feasible region with the properties we specify below,
there exists an appropriate self-concordant barrier function. Thus the results we
describe here provide a general theoretical approach for solving convex programming
problems.

The interior-point method utilizes Newton’s method. We derive a bound on
the number of Newton iterations required to determine the optimal function value to
within some tolerance. Each Newton iteration involves the solution of the Newton
equations, requiring O(n3) computations. A prescribed step length is used, so there
is no line search. Ignoring the computations for evaluating the gradient and Hessian,
the algorithm determines the solution to within a specified tolerance in a polynomial
number of operations. If polynomial algorithms exist to evaluate the gradient and
Hessian, the overall algorithm is polynomial.

Two major results are required to prove that the overall algorithm is a poly-
nomial algorithm. The first states that if Newton’s method is applied to a single
barrier subproblem, and the initial guess is “close” to the solution, then the number
of iterations required to find an approximate solution of this subproblem is bounded.
The second states that, if the barrier parameter is not changed too quickly, then an
approximate solution of one subproblem will not be “too far” from the solution of
the next subproblem.

These two results might at first seem to be obvious. They are not. In the
form that we state the convex programming problem, its solution is usually at the
boundary of the feasible region. The barrier function is singular on the boundary of
the feasible region, and so the Hessian of the barrier function becomes ill-conditioned
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as the solution is approached. In standard convergence results for Newton’s method
(see Chapter 11), the rate constants can be shown to depend on the condition
number of the Hessian, a number that is tending to +∞ in the case of a barrier
function.

To analyze the behavior of Newton’s method in this case, we must in some
manner take this singularity into account. To do this, it will be useful to define a
norm ‖·‖x in terms of the Hessian of the barrier function evaluated at a point x.
We will measure “closeness” in terms of this norm.

This norm depends on the Hessian, and so changes as the variables change.
If the Hessian changed rapidly, then it might not be possible to use the values of
‖x − x∗‖x to draw conclusions about the convergence of the method. Thus, the
rate of change of the Hessian matrix must not be “too great.” This reasoning leads
us to impose a bound on the third derivatives of the barrier function in terms of
the Hessian (see Section F.2.1). This bound is all that is required to prove the first
major result corresponding to the behavior of Newton’s method on a single barrier
subproblem.

To prove the second major result, that is, that the approximate solution of
one subproblem will not be too far from the solution of the next subproblem, it
is necessary that the values of the barrier functions not change “too quickly” as
the barrier parameter changes. To guarantee this, we will impose a bound on the
first derivatives of the barrier functions in terms of the Hessian (see Section F.3).
By measuring all quantities in terms of the Hessian, we are able to circumvent the
difficulties associated with the singularity of the barrier function at the solution.

If the barrier function has these properties, then an interior-point method can
be designed so that the optimal solution of a convex programming problem can be
found (to within some tolerance) using a polynomial number of Newton iterations.

F.2 Basic Ideas of Self Concordance
Our focus in this section is on the behavior of Newton’s method when applied to a
single barrier subproblem. We start by analyzing properties of the barrier functions
that permit “good” performance of Newton’s method.

F.2.1 Self-Concordant Functions

If Newton’s method is applied to a quadratic function, then it converges in one iter-
ation. By extension, if the Hessian matrix does not change rapidly, then Newton’s
method ought to converge quickly. Thus, we might say that the radius of conver-
gence of Newton’s method for minimizing a function F (x) is inversely proportional
to the “nonlinearity” of F . Newton’s method performs “well” if small changes in x
lead to small changes in the second derivative of F . Change in the second derivative
can be measured using the third derivative. Intuitively, the third derivative should
be small relative to the second derivative. The self-concordance property reflects
this requirement.
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A one-dimensional, convex barrier function F (x) is called self concordant if

|F ′′′(x)| ≤ 2F ′′(x)3/2

for every x in the interior of the function’s domain. A simple example is the log-
arithmic barrier function F (x) = − log(x) for x > 0. Then F ′′(x) = 1/x2 and
F ′′′(x) = −2/x3, and the inequality above is satisfied.

There is nothing special about the constant 2 in the definition. If instead the
function satisfied

|F ′′′(x)| ≤ CF ′′(x)3/2

for some constant C, we could replace F by the scaled function F̂ = 1
4C2F , and

then F̂ would be self concordant. The number 2 is used in the definition so that
the function F (x) = − log x is self-concordant without any scaling.

To define self-concordancy for a multi-dimensional function, we insist that the
third derivative along each direction be bounded by the second derivative in that
direction via the relation above. We now give a more precise definition.

Let S be a bounded, closed, convex subset of �n with non-empty interior intS.
(The assumption that S is bounded is not that important, since we could modify
the optimization problem by adding artificial, very large bounds on the variables.)
Let F (x) be a convex function defined on the set S, and assume that F has three
continuous derivatives. Then F is self concordant on S if:

1. (barrier property) F (xi) → ∞ along every sequence {xi } ⊂ intS converging
to a boundary point of S.

2. (differential inequality) F satisfies

|∇3F (x)[h, h, h]| ≤ 2
(
hT∇2F (x)h

)3/2

for all x ∈ intS and all h ∈ �n.

In this definition,

∇3F (x)[h1, h2, h3] ≡ ∂3

∂t1∂t2∂t3
F (x + t1h1 + t2h2 + t3h3)

∣∣∣
t1=t2=t3=0

,

that is, it is a third-order directional derivative of F . Since

∇2F (x)[h, h] ≡ ∂2

∂t1∂t2
F (x + t1h + t2h)

∣∣∣
t1=t2=0

= hT∇2F (x)h,

∇F (x)[h] ≡ ∂

∂t1
F (x + t1h)

∣∣∣
t1=0

= ∇F (x)Th,

these definitions are consistent with the formulas for directional derivatives derived
in Section 5 of Chapter 11.

Some examples of self-concordant functions are given in the Problems. One
particular case is the logarithmic barrier function

F (x) = −
m∑

i=1

log(aT
i x − bi)
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that is self concordant on the set S =
{

x : aT
i x − bi ≥ 0, i = 1, . . . , m

}
.

For the remainder of this Chapter, we make several assumptions to simplify
our discussion. They are not essential; in fact, almost identical results can be proved
without these assumptions. We assume that ∇2F (x) is nonsingular for all x ∈ intS.
This allows us to define a norm as follows:

‖h‖2
x ≡ hT∇2F (x)h.

(See the Problems.) We also assume that F has a minimizer x∗ ∈ intS. Because F
is convex, these assumptions guarantee that x∗ is the unique minimizer of F in S.

The following lemmas indicate some basic properties of self-concordant func-
tions. The first shows that the third-order directional derivative can be bounded
using the norm that we have defined.

Lemma F.1. The third-order directional derivative of a self-concordant function
satisfies

|∇3F (x)[h1, h2, h3]| ≤ 2 ‖h1‖x ‖h2‖x ‖h3‖x .

Proof. See the Problems.

The next lemma bounds how rapidly a self-concordant function F (x) and its
Hessian can change if a step is taken whose norm is less than one. The first result
is an analog of a Taylor series expansion for a self-concordant function. The second
is a bound on how rapidly the norm we have defined can change when x changes.

Lemma F.2. Let F be self-concordant on S. Let x ∈ intS and suppose that
‖h‖x < 1. Then x + h ∈ intS, and

F (x) + ∇F (x)Th + β(−‖h‖x) ≤ F (x + h) ≤ F (x) + ∇F (x)Th + β(‖h‖x) (F.1)

where

β(s) = − log(1 − s) − s =
s2

2
+

s3

3
+

s4

4
+ · · · .

The lower bound in (F.1) is satisfied even if ‖h‖x ≥ 1. Furthermore, for any g ∈ �n,

(1 − ‖h‖x) ‖g‖x ≤ ‖g‖x+h ≤ (1 − ‖h‖x)−1 ‖g‖x . (F.2)

Proof. The proof is in three parts. We assume initially that x+h ∈ intS and prove
(F.1) and (F.2). These two results form parts 1 and 2 of the proof, respectively. In
part 3, we prove that x + h ∈ intS must hold.

Suppose that x+h ∈ intS, and let r = ‖h‖x < 1. If r = 0 then h = 0 and the
results are trivially true, so we assume that r > 0.

Part 1: To prove (F.1), define

φ(t) ≡ hT∇2F (x + th)h = ‖h‖2
x+th .
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We will derive a Taylor series expansion of φ(t)−1/2 and use it to bound φ(t) in
terms of φ(0). The resulting bound will be used to obtain (F.1).

We first obtain the Taylor series expansion. The function φ is continuously
differentiable for 0 ≤ t ≤ 1, and

φ(t) > 0, φ(0) = r2 < 1, and |φ′(t)| = |∇3F (x + th)[h, h, h]| ≤ 2φ(t)3/2.

Hence ∣∣∣∣ d

dt

[
φ(t)−1/2

]∣∣∣∣ =
∣∣∣− 1

2φ(t)−3/2φ′(t)
∣∣∣ ≤ 1.

If we expand φ(t)−1/2 in a Taylor series with remainder, then

φ(t)−1/2 = φ(0)−1/2 + t

[
d

ds
φ(s)−1/2

]
s=η

for some η between 0 and t. Using the bound above we obtain

φ(0)−1/2 − t ≤ φ(t)−1/2 ≤ φ(0)−1/2 + t

for 0 ≤ t ≤ 1. Because φ(0) = r2 < 1, this can be rearranged to obtain the desired
bound on φ(t):

φ(0)
(1 + tφ(0)1/2)2

≤ φ(t) ≤ φ(0)
(1 − tφ(0)1/2)2

.

Thus
r2

(1 + rt)2
≤ φ(t) ≡ hT∇2F (x + th)h ≤ r2

(1 − rt)2
(F.3)

for 0 ≤ t ≤ 1. (Recall that r = ‖h‖x.)
If we integrate (F.3) twice, we get

F (x) + ∇F (x)Th +
∫ 1

0

[ ∫ τ

0

r2

(1 + rt)2
dt

]
dτ

≤ F (x + h) ≤ F (x) + ∇F (x)Th +
∫ 1

0

[ ∫ τ

0

r2

(1 − rt)2
dt

]
dτ.

Evaluating the integrals leads to (F.1).
It is straightforward to verify that the derivation of the lower bound remains

valid even in the case where r = ‖h‖x ≥ 1. (See the Problems.) This completes
part 1 of the proof.

Part 2: We now prove (F.2). Let g ∈ �n and define

ψ(t) ≡ gT∇2F (x + th)g = ‖g‖2
x+th .

We will use (F.3) to derive a bound on ψ′(t). This bound will be used to bound
ψ(t) in terms of ψ(0), and this will lead directly to (F.2).

The function ψ is a continuously differentiable non-negative function for 0 ≤
t ≤ 1. Lemma F.1 implies that

|ψ′(t)| = |∇3F (x + th)[g, g, h]| ≤ 2 ‖g‖2
x+th ‖h‖x+th .
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Thus using (F.3) we obtain

|ψ′(t)| ≤ 2ψ(t)φ(t)1/2 ≤ 2ψ(t)
r

1 − rt

for 0 ≤ t ≤ 1. This is the desired bound on ψ′(t).
We now use this to bound ψ(t) in terms of ψ(0). The bound on ψ′(t) implies

that

d

dt
[(1 − rt)2ψ(t)] = (1 − rt)2[ψ′(t) − 2r(1 − rt)−1ψ(t)] ≤ 0

d

dt
[(1 − rt)−2ψ(t)] = (1 − rt)−2[ψ′(t) + 2r(1 − rt)−1ψ(t)] ≥ 0

and so
(1 − rt)2ψ(t) ≤ ψ(0) and (1 − rt)−2ψ(t) ≥ ψ(0).

Rearranging yields

(1 − rt)2ψ(0) ≤ ψ(t) ≤ (1 − rt)−2ψ(0).

If we substitute into this inequality the definitions of r and ψ, we obtain (F.2). This
completes part 2 of the proof.

Part 3: We now prove that if ‖h‖x < 1 then x + h ∈ intS. Suppose by
contradiction that x + h is not in intS. Consider now the line segment x + th
for 0 ≤ t ≤ 1. Since intS is open and convex, there is some “boundary” point
y = x + t̄h along this line segment such that y �∈ intS, but the half-open segment
[x, y) = { z = x + th : 0 ≤ t < t̄ } ⊂ intS. For each point z ∈ [x, y), the norm
‖z − x‖x is less than 1, and hence from (F.1), F (z) is bounded. But since F has
the barrier property, F (z) should go to ∞ as z approaches y. Hence we have a
contradiction. This completes the proof.

F.2.2 The Newton Decrement

Many of our results will be phrased in terms of a quantity called the “Newton
decrement.” It is defined below. The Newton decrement measures the norm of the
Newton direction, but indirectly it indicates how close we are to the solution of a
barrier subproblem. For a linear program, the Newton decrement is equivalent to the
2-norm measure of proximity to the barrier trajectory that was defined in Section
10.6 (see the Problems). We will use the Newton decrement in the convergence
results, in place of the more traditional measures of convergence, such as ‖x − x∗‖
and |F (x) − F (x∗)|.

Let x ∈ intS and let pN be the Newton direction for F at x. We define the
Newton decrement of F at x to be

δ = δ(F, x) = ‖pN‖x .

Consider the Taylor series approximation to F (x + h):

F (x) + ∇F (x)Th + 1
2hT∇2F (x)h = F (x) + ∇F (x)Th + 1

2 ‖h‖2
x .
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The Newton direction pN minimizes this approximation and is the solution to

∇2F (x)pN = −∇F (x).

It is straightforward to check that the optimal value of the Taylor series approxi-
mation is

F (x) − 1
2δ(F, x)2.

This indicates why δ(F, x) is called the Newton decrement.
We have the following lemma.

Lemma F.3. The Newton decrement satisfies

δ(F, x) = max
{∇F (x)Th : ‖h‖x ≤ 1

}
.

Proof. See the Problems.

Many of our results will be expressed in terms of the Newton decrement. We
will be able to obtain bounds on F (x)−F (x∗) and ‖x − x∗‖ in terms of the Newton
decrement, and we will also be able to measure the progress at each iteration of the
method in terms of the Newton decrement. Thus, statements about the convergence
of the method in terms of the Newton decrement will indirectly provide us with
information about convergence as measured in the more traditional ways.

The first of these results (a bound on F (x)−F (x∗)) is given below. Its proof,
which depends on a notion of duality different than that presented in Chapter 14,
has not been included here.

Lemma F.4. Let x ∈ intS with δ(F, x) < 1, and let x∗ ∈ S be the minimizer of
F . Then

F (x) − F (x∗) ≤ β(δ(F, x)),

where β(·) is the function defined in Lemma F.2.

Proof. See the book by Nesterov and Nemirovsky (1993).

F.2.3 Convergence of the Damped Newton Method

Each barrier subproblem will be solved using a “damped” Newton method, that is,
a step is taken along the Newton direction but with a specified step length that is
less than one. If we denote the Newton direction at x by pN , then the method is
defined by

x+ = x +
1

1 + δ(F, x)
pN .

The reason for including this steplength is that the resulting displacement will
always have norm less than one, so that the lemmas of the previous Section apply.
As the method converges and the Newton direction approaches zero, the step length
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approaches the pure Newton step of one. The rest of this Section develops the
properties of the damped-Newton method.

The next lemma gives a lower bound on how much the function F will be
decreased by a step of the damped Newton method.

Lemma F.5. If x+ is the result of the damped Newton iteration, then x+ ∈ intS
and

F (x) − F (x+) ≥ δ(F, x) − log(1 + δ(F, x)).

Proof. Since ‖pN‖x = δ ≡ δ(F, x), we have that ‖x+ − x‖x = δ/(1 + δ) < 1 and
thus by Lemma F.2, x+ ∈ intS. Using Lemma F.2, the definition of β(·), and the
properties of δ and pN , we obtain

F (x+) ≤ F (x) +
1

1 + δ
∇F (x)TpN + β

(
1

1 + δ
‖pN‖x

)

= F (x) − 1
1 + δ

pT
N∇2F (x)pN + β

(
δ

1 + δ

)

= F (x) − δ2

1 + δ
− log

(
1 − δ

1 + δ

)
− δ

1 + δ
= F (x) − δ + log(1 + δ).

Thus
F (x) − F (x+) ≥ δ − log(1 + δ),

as desired.

The lemma shows that the damped Newton step is well-defined, in the sense
that the iterates remain in intS. The lemma also shows that

F (x) − F (x+) ≥ δ − log(1 + δ),

where δ = δ(F, x). The right-hand side is zero when δ = 0, and is positive and
strictly increasing for δ > 0. The result gives a lower bound on how much progress
is made at each Newton iteration.

If δ(F, x) remains large, then Newton’s method must decrease the value of F (x)
by a nontrivial amount. Since the function is bounded below on S, this cannot go on
indefinitely, and so δ(F, x) must ultimately become small. The next theorem shows
that, if δ(F, x) is small, then the method converges at a “quadratic rate” in terms
of the Newton decrement. (This is not the same as the notion of convergence rate
defined in Chapter 2; see the Exercises.) Together, these results provide a bound
on the number of Newton iterations required to solve the optimization problem to
within some tolerance. This argument is made precise in Theorem F.7.

The theorem below proves that δ(F, x+) ≤ 2δ(F, x)2, regardless of the value
of x. This result is primarily of interest to us in the case when δ is small. (When δ
is large, Lemma F.5 is more useful.) It also determines a bound on ‖x − x∗‖x∗ in
terms of δ, and thus shows that if δ is small, then the norm of the error is small as
well.
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Theorem F.6. If x ∈ intS then

δ(F, x+) ≤ 2δ(F, x)2.

Let x∗ be the minimizer of F in S, and assume that δ(F, x) < 1. Then

‖x − x∗‖x∗ ≤ δ(F, x)
1 − δ(F, x)

.

Proof. The proof is in two parts, proving each of the results in turn.
Part 1: We will prove that δ(F, x+) ≤ 2δ(F, x)2. Let pN be the Newton

direction at x, δ = δ(F, x), and α = 1/(1+ δ). Thus x+ = x+αpN . For any h ∈ �n

we define
ψ(t) = ∇F (x + tpN)Th.

This function is twice continuously differentiable for 0 ≤ t ≤ α, with

ψ′(t) = pT
N∇2F (x + tpN)h

ψ′′(t) = ∇3F (x + tpN)[h, pN , pN ].

By Lemma F.1, Lemma F.2, and the definition of the Newton decrement we have

|ψ′′(t)| ≤ 2 ‖h‖x+tpN
‖pN‖2

x+tpN

≤ 2(1 − tδ)−3 ‖h‖x ‖pN‖2
x

= 2(1 − tδ)−3 ‖h‖x δ2.

If we integrate ψ′′ twice, we obtain that

∇F (x+)Th ≡ ψ(α) ≤ ψ(0) + αψ′(0) + ‖h‖x

∫ α

0

[ ∫ t

0

2(1 − τδ)−3δ2dτ
]
dt

= ψ(0) + αψ′(0) +
δ2α2

1 − δα
‖h‖x

= ∇F (x)Th + αpT
N∇2F (x)h +

δ2α2

1 − δα
‖h‖x

= (1 − α)∇F (x)Th +
δ2α2

1 − δα
‖h‖x (definition of pN)

=
δ

1 + δ
∇F (x)Th +

δ2

1 + δ
‖h‖x (definition of α)

≤ 2δ2

1 + δ
‖h‖x (by Lemma F.3)

≤ 2δ2

1 + δ

1
1 − αδ

‖h‖x+
(by Lemma F.2)

= 2δ2 ‖h‖x+
.

Since this is true for all h we have

δ(F, x+) = max
{
∇F (x+)Th : ‖h‖x+

≤ 1
}
≤ 2δ2.
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This completes Part 1 of the proof.
Part 2: We will prove that ‖x − x∗‖x∗ ≤ δ(F, x)/1− δ(F, x). Let x ∈ intS be

such that δ = δ(F, x) < 1. From Lemma F.4 we have that

F (x) − F (x∗) ≤ β(δ) = − log(1 − δ) − δ.

Let q = ‖x − x∗‖x∗ . From Lemma F.2 applied at x∗ it follows that

F (x) ≥ F (x∗) + β(−q) = F (x∗) + q − log(1 + q).

Combining these two results we get

q − log(1 + q) ≤ −δ − log(1 − δ),

and it follows that q ≤ δ/(1 − δ), which is the desired result. (See the Exercises.)
This completes the proof.

We conclude with a summary theorem, the results of which are direct con-
sequences of the previous results. It provides a bound on the number of Newton
iterations required to solve a single barrier subproblem to within a tolerance.

Theorem F.7. Let S be a bounded, closed, convex subset of �n with non-empty
interior, and let F (x) be a convex function that is self concordant on S. Given an
initial guess x0 ∈ intS, the damped Newton method is defined by the recurrence

xi+1 = xi − 1
1 + δ(F, xi)

∇2F (xi)−1∇F (xi).

Then xi ∈ intS for all i, and

F (xi+1) ≤ F (xi) − [δ(F, xi) − log(1 + δ(F, xi))].

In particular, if δ(F, xi) ≥ 1/4 then F (xi)−F (xi+1) ≥ 1
4 − log 5

4 ≥ 0.026. If at some
iteration i we have δ(F, xi) ≤ 1

4 then we are in the region of quadratic convergence
of the method, that is, for every j ≥ i, we have

δ(F, xj+1) ≤ 2δ2(F, xj) ≤ 1
2δ(F, xj)

F (xj) − F (x∗) ≤ β(δ(F, xj)) ≤ δ2(F, xj)
2(1 − δ(F, xj))

‖xj − x∗‖x∗
≤ δ(F, xj)

1 − δ(F, xj)
.

The number of Newton steps required to find a point x ∈ S with δ(F, x) ≤ κ < 1 is
bounded by

C ([F (x0) − F (x∗)] − log log κ)

for some constant C.

Proof. See the Exercises.
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Exercises
2.1. Prove that if a one-dimensional convex function satisfies

|F ′′′(x)| ≤ CF ′′(x)3/2

for some constant C, then the scaled function F̂ = 1
4C2F satisfies

|F̂ ′′′(x)| ≤ CF̂ ′′(x)3/2.

2.2. Assume that ∇2F (x) is nonsingular for all x ∈ intS. Prove that the formula

‖h‖2
x ≡ hT∇2F (x)h

defines a norm for all x ∈ intS.
2.3. Prove Lemma F.1.
2.4. (The next few exercises show how to construct new self-concordant functions

from existing ones.) Let F (x) be a self-concordant function on the set S ⊂ �n.
Suppose that x = Ay + b where A is an n × m matrix, b is an n-vector, and
y ∈ T ⊂ �m. Prove that

F̂ (y) ≡ F (Ay + b)

is a self-concordant function on T . What assumptions on the set T are
required?

2.5. Let Fi be a self-concordant function on Si ⊂ �n for i = 1, . . . , m, and let
αi ≥ 1 be real numbers. Let S be the intersection of the sets {Si }. Prove
that

F (x) =
m∑

i=1

αiFi(x)

is a self-concordant function on S. What assumptions on the set S are re-
quired?

2.6. Let Fi be a self-concordant function on Si ⊂ �ni for i = 1, . . . , m. Define

S = {x = (x1, . . . , xm) : xi ∈ Si } .

Prove that

F (x1, . . . , xm) =
m∑

i=1

Fi(xi)

is a self-concordant function on S. What assumptions on the set S are re-
quired?

2.7. In Lemma F.2, prove that the lower bound in (F.1) is valid even in the case
where r = ‖h‖x ≥ 1.

2.8. Prove Lemma F.3 by considering an optimization problem of the form

maximize
h

bTh

subject to hTAh − 1 = 0.

for appropriate choices of b and A.
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2.9. Complete the proof of Theorem F.6 by proving that

q − log(1 + q) ≤ −δ − log(1 − δ)

implies q ≤ δ/(1 − δ).
2.10. Suppose that the linear programming problem

minimize cTx

subject to Ax = b
x ≥ 0

is solved by the logarithmic barrier method. Let x be a strictly feasible point,
and let μ be the current barrier parameter. Prove that the Newton decrement
at x is equal to the 2-norm proximity measure δ(x, μ) defined in Section 10.6

2.11. Prove Theorem F.7.
2.12. In Theorem F.7, prove that the sequences

{ |F (xj) − F (x∗)| } and
{
‖xj − x∗‖x∗

}

are bounded above by sequences that converge quadratically to zero. That
is, prove that

|F (xj) − F (x∗)| ≤ sj

‖xj − x∗‖x∗
≤ tj

where
lim

j→∞
sj+1

s2
j

< +∞ and lim
j→∞

tj+1

t2j
< +∞.

(Some authors refer to this as “R-quadratic” convergence.)

F.3 The Path-Following Method
In the previous Section we analyzed the behavior of Newton’s method when ap-
plied to a single barrier subproblem. We now consider the overall interior-point
method based on solving a sequence of subproblems. We will require an additional
assumption, that is, a bound on the first-derivative of the barrier function.

Let S be a set with the same properties as in the previous Section. A self-
concordant function F on S is a self-concordant barrier function for S if, for some
constant ν > 0,

|∇F (x)Th| ≤ ν1/2 ‖h‖x

for all x ∈ intS and all h ∈ �n. Because of Lemma F.3, the Newton direction for
F at a point x must satisfy

‖pN‖x ≤ ν1/2

for all x ∈ intS. (See the Exercises.)
The one-dimensional function F (x) = − log x is a self-concordant barrier

function with ν = 1 for S = {x : x ≥ 0 }; the n-dimensional function F (x) =
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−∑n
i=1 log(xi) is a self-concordant barrier function with ν = n for S = {x : x ≥ 0 };

the function F (x) = −∑m
i=1 log(aT

i x− bi) is a self-concordant barrier function with
ν = m for the set S =

{
x : aT

i x ≥ bi, i = 1, . . . , m
}
. A self-concordant barrier func-

tion exists for any convex set of the form S = {x : gi(x) ≥ 0 }; however, evaluating
such a barrier function may not be computationally practical.

We will assume that ν ≥ 1 throughout this Section. If the above inequality
were satisfied for some ν < 1 then it would also be satisfied for ν = 1, so this
assumption is not serious. (In fact, there is further justification for making this
assumption. It is possible to prove that, if F is a self-concordant barrier function,
and F (x) is not constant, then ν ≥ 1.)

We require the following technical lemma.

Lemma F.8. (Semiboundedness) If F is a self-concordant barrier function with
parameter ν ≥ 1 then

∇F (x)T(y − x) ≤ ν

for any x ∈ intS and y ∈ S.

Proof. See the Exercises.

The path-following method will be applied to a convex program that has the
following standard form:

minimize cTx

subject to x ∈ S
(P)

where c �= 0. This standard form requires that the objective function be a linear
function, but otherwise it is unremarkable.

If our optimization problem is written in the form

minimize f(x)
subject to g(x) ≥ 0

we can easily transform it to standard form. To do this, we introduce a new variable
xn+1 and consider the problem

minimize xn+1

subject to g(x) ≥ 0
xn+1 − f(x) ≥ 0.

It is easy to verify that these two problems are equivalent. The latter problem is in
standard form, with c = (0, . . . , 0, 1)T.

The convex programming problem will be solved using a path-following
method of the following form. For ρ > 0 we define

Fρ(x) = ρcTx + F (x)

where F is a self-concordant barrier function for the set S with parameter ν ≥ 1, and
where the Hessian of F is nonsingular for all x ∈ intS. Let x∗(ρ) be the minimizer
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of Fρ(x) for x ∈ intS. Our method will generate xi ≈ x∗(ρi) for ρi → +∞. The
set of minimizers x∗(ρ) forms a path through the feasible region that terminates at
the solution x∗ to the optimization problem. Note that Fρ(x) is self-concordant on
S. (See the Exrcises.)

Elsewhere in the book, our barrier problems have a parameter multiplying
the barrier term that goes to zero. Here, to simplify the exposition, the parameter
multiplies the objective and goes to infinity. This just corresponds to multiplying
the barrier function by a constant:

ρcTx + F (x) = ρ(cTx + 1
ρF (x)) = ρ(cTx + μF (x))

where μ = 1/ρ. Thus, regardless of which form of barrier function we use, the set
of minimizers is the same.

To specify the method, we must specify four things:

• a policy for updating the penalty parameter ρ,
• the optimization method used to minimize Fρ for a fixed ρ,
• the stopping criteria for the optimization method on a single subproblem,
• the stopping criterion for the path-following method.

These are specified as follows:

• updating ρ: we fix γ > 0 (the update parameter) and set

ρi+1 =
(

1 +
γ√
ν

)
ρi.

• the stopping criteria for a subproblem: this is satisfied when the point (ρi, xi)
is close to the path x∗(ρ), that is, when it satisfies the proximity condition

Cκ(ρ, x) : {x ∈ intS }& { δ(Fρ, x) ≤ κ }
for some κ ≥ 0.

• optimization method: we update xi → xi+1 using the damped Newton method:

y�+1 = y� − 1
1 + δ(Fρi+1 , y�)

∇2F (y�)−1∇Fρi+1(y�)

with y0 = xi. This iteration is repeated until (ρi+1, y�) satisfies Cκ(·, ·), and
then we set xi+1 = y�. (Note that ∇2Fρ = ∇2F since F − Fρ is a linear
function.)

• the stopping criterion for the path-following method: given some tolerance
ε > 0, we will terminate the algorithm when we have found an x satisfying
cTx − z∗ ≤ ε, where z∗ = cTx∗). Since it is unlikely that z∗ will be known in
advance, we will guarantee this indirectly by ensuring that a bound on cTx−z∗
is at most ε. The precise bound is specified in Theorem 17.12.

The only detail left is the initialization, that is, finding an initial pair (ρ0, x0)
that satisfies the proximity condition. Such a pair can be found using a Phase I
procedure (see Section 5.4.1), applying the path-following method to a preliminary
optimization problem. (Details are outlined in the Exercises.)
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F.3.1 Convergence and Complexity

Our main theorem is the consequence of the following three lemmas. The first
lemma determines how rapidly the overall method converges, where each “iteration”
corresponds to the approximate solution of a barrier subproblem. It can be used
to determine an upper bound on how many barrier subproblems must be solved in
order to determine z∗ to within some tolerance.

Lemma F.9. (rate of convergence) Let z∗ be the optimal value of P. If a pair
(ρ, x) satisfies the proximity condition Cκ(·, ·) with κ < 1 then

cTx − z∗ ≤ χ

ρ
, where χ = ν +

κ

1 − κ

√
ν.

In particular, for the path-following method, we have

cTxi − z∗ ≤ χ

ρ0

[
1 +

γ√
ν

]−i

≤ χ

ρ0
exp

{
−Cγ

i√
ν

}

with positive constant Cγ depending only on γ.

Proof. Let x∗(ρ) be the minimizer of Fρ. The proof is in two parts. In the first
part we determine a bound on cTx∗(ρ) − z∗. If the path-following method solved
each barrier subproblem exactly, then this would be sufficient. In the second part,
we determine a bound on cTx− cTx∗(ρ) corresponding to the approximate solution
of a barrier subproblem.

Part I: We will first derive the bound

cTx∗(ρ) − z∗ ≤ ν

ρ
; (F.4)

that is, on the trajectory the “error” in the function value is proportional to 1/ρ.
Let x∗ be the solution of P. Then from the optimality conditions we have

∇Fρ(x∗(ρ)) = ρc + ∇F (x∗(ρ)) = 0.

Hence

ρ(cTx∗(ρ) − z∗) = ρ(cTx∗(t) − cTx∗) = ∇F (x∗(ρ))T(x∗ − x∗(ρ)).

The semi-boundedness property (Lemma 17.8) now gives

∇F (x∗(ρ))T(x∗ − x∗(ρ)) ≤ ν,

and (F.4) follows immediately. This completes the first part of the proof.
Part 2: We now prove that cTx−z∗ ≤ χ/ρ by deriving a bound on cTx−cTx∗(ρ).

By the proximity condition and the assumptions of the lemma, δ(Fρ, x) ≤ κ < 1.
From Theorem F.6 we obtain

‖x − x∗(ρ)‖x∗(ρ) ≤
κ

1 − κ
.
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Thus, using Lemma F.3 and the fact that ρc = −∇F (x∗(ρ)),

ρ(cTx − cTx∗(ρ)) = ∇F (x∗(ρ))T(x∗(ρ) − x)
≤ ‖x∗(ρ) − x‖x∗(ρ) sup

{
∇F (x∗(ρ))Th : ‖h‖x∗(ρ) ≤ 1

}
= ‖x∗(ρ) − x‖x∗(ρ) δ(F, x∗(ρ)).

Since F is a self-concordant barrier function with parameter ν, we have

δ(F, x∗(ρ)) ≤ √
ν.

Thus, combining these results we obtain

|cTx − cTx∗(ρ)| ≤ κ

ρ(1 − κ)
√

ν, (F.5)

which, combined with (F.4), gives cTx − z∗ ≤ χ/ρ.

The next lemma analyzes what happens when the approximate solution of
one barrier subproblem is used as the initial guess for the next subproblem. It
determines how “close” the initial guess is to a solution of the new subproblem.

Lemma F.10. Let ρ and r be two values of the penalty parameter, and let (ρ, x)
satisfy the proximity condition Cκ(·, ·) for some κ < 1. Then

Fr(x) − min
u

Fr(u) ≤ β(κ) +
κ

1 − κ

∣∣∣∣1 − r

ρ

∣∣∣∣√ν + νβ(1 − r/ρ)

where, as before,
β(s) = − log(1 − s) − s.

Proof. The proof is in two parts. In the first part, a bound is obtained for

Fr(x∗(ρ)) − Fr(x∗(r)).

If the path-following method solved each barrier subproblem exactly, then this would
be sufficient. In the second part, this bound is used in the formula

Fr(x) − Fr(x∗(r)) = [Fr(x) − Fr(x∗(ρ))] + [Fr(x∗(ρ)) − Fr(x∗(r))]

to complete the proof of the lemma.
Part 1: The path of minimizers x∗(ρ) satisfies the equation

ρc + ∇F (x) = 0. (F.6)

Since ∇2F is assumed to be nonsingular in intS, we can use the Implicit Function
Theorem (see Section 9 of Appendix B) to show that x∗(ρ) is continuously differ-
entiable. Its derivative can be found by differentiating (F.6) as a function of t (see
the Exercises):

x′
∗(ρ) = −∇2F (x∗(ρ))−1c.
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We define

φ(r) = Fr(x∗(ρ)) − Fr(x∗(r))
= [rcTx∗(ρ) + F (x∗(ρ))] − [rcTx∗(r) + F (x∗(r))].

Then, using (F.6)

φ′(r) = cTx∗(ρ) − cTx∗(r) − [rc + ∇F (x∗(r))]Tx′
∗(r)

= cTx∗(ρ) − cTx∗(r).

Hence
φ(ρ) = φ′(ρ) = 0.

In addition, φ′(r) is continuously differentiable, with

φ′′(r) = −cTx′
∗(r) = cT∇2F (x∗(r))−1c.

Then (F.6) implies that

0 ≤ φ′′(r) =
1
r2

∇F (x∗(r))T∇2F (x∗(r))−1∇F (x∗(r))

=
1
r2

δ(F, x∗(r))2 ≤ ν

r2
.

If we integrate φ′′(r) twice: ∫ r

ρ

∫ s

ρ

φ′′(y) dy ds,

and use φ(ρ) = φ′(ρ) = 0 and the bound on φ′′(r), we obtain

Fr(x∗(ρ)) − Fr(x∗(r)) = φ(r) ≤ νβ

(
1 − r

ρ

)
.

This completes the first part of the proof.
Part 2: We are now ready to complete the proof of the lemma:

Fr(x) − min
u

Fr(u) = Fr(x) − Fr(x∗(r))

= [Fr(x) − Fr(x∗(ρ))] + [Fr(x∗(ρ)) − Fr(x∗(r))
= [Fr(x) − Fr(x∗(ρ))] + φ(r)
= [Fρ(x) + (ρ − r)cTx − Fρ(x∗(ρ)) − (ρ − r)cTx∗(ρ)] + φ(r)
= [Fρ(x) − Fρ(x∗(ρ))] + (ρ − r)cT(x − x∗(ρ)) + φ(r).

Using Lemma F.4 and the inequality δ(Fρ, x) ≤ κ < 1 we obtain

Fρ(x) − Fρ(x∗(ρ)) = Fρ(x) − min
u

Fρ(u) ≤ β(δ(Fρ, x)) ≤ β(κ).

Combining these results with (F.5) and the bound on φ(r) from Part 1, gives the
desired result.
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The next lemma determines how many Newton iterations are required to ob-
tain an approximate solution to a single barrier subproblem. This result is closely
related to Theorem F.7.

Lemma F.11. (Complexity of a step) The damped Newton iteration is well-defined,
that is, it keeps iterates in intS and terminates after finitely many steps. The
number of Newton steps until termination does not exceed a certain constant Nκ,γ

that depends only on κ and γ.

Proof. A number of the conclusions follow from Theorem F.7, namely, the damped
Newton method keeps the iterates y� in intS, and ensures that the stopping criteria
are satisfied after a finite number of steps. We must prove that the number of
Newton steps is bounded by a constant that depends only on κ and γ.

Applying Lemma 17.10 with x = xi, ρ = ρi, and r = ρi+1 we obtain

Fρi+1(xi) − min
u

Fρi+1(u) ≤ β(κ) +
κγ

1 − κ
+ νβ

(
− γ√

ν

)
.

The first two terms only involve κ and γ. We only need worry about the third term:

νβ

(
− γ√

ν

)
= ν[log(1 + γ/

√
ν) + γ/

√
ν ]

≤ νγ/
√

ν =
√

ν γ,

since ν ≥ 1. Thus, for fixed ν,

Fρi+1(xi) − min
u

Fρi+1(u)

is bounded in terms of κ and γ, as desired. The bound on the number of Newton
steps now follows from Theorem F.7.

The following theorem summarizes the above results. It is the result that
we have been working towards. It shows that an interior-point method applied to
a convex programming problem can determine the solution to within a specified
tolerance in polynomial time.

Theorem F.12. Suppose that we solve the problem P on a bounded, closed, convex
domain S using the path-following method associated with a self-concordant barrier
function F with parameter ν ≥ 1. Let 0 < κ < 1 and γ > 0 be the path tolerance
and update parameter, respectively, and assume that (ρ0, x0) satisfies the proximity
condition Cκ(·, ·). Then

cTxi − z∗ ≤ 2ν

ρ0

(
1 +

γ√
ν

)−i

, for i = 1, 2, . . .

The number of Newton steps required for each iteration (ρi, xi) → (ρi+1, xi+1) does
not exceed a constant Nκ,γ depending only on κ and γ. In particular, the total
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number of Newton steps required to find an x satisfying cTx − z∗ ≤ ε is bounded
above by

Cκ,γ

√
ν log

(
2ν

ρ0ε

)
,

with constant Cκ,γ depending only on κ and γ.

Proof. The theorem follows from the three previous lemmas. See the Exercises.

To conclude, we apply these theoretical results to the linear program

minimize cTx

subject to Ax = b
x ≥ 0.

The function F (x) = −∑n
i=1 log(xi) is a self-concordant barrier function with ν = n

for the set S = {x : Ax = b, x ≥ 0 }. The path-following algorithm in this section is
similar to the primal path-following method in Section 10.6. (There are some minor
differences. For example, we must project the Newton direction for Fρ = ρcTx+F (x)
onto the set {x : Ax = b }; this operation affects only the cost of an iteration, not
the number of iterations.)

Let L be the length of the input data. Setting ε = 2−2L is sufficient to
guarantee that a solution is found. If we assume that the initial penalty parameter ρ
is 2−O(L), then it follows from Theorem 17.13 that the total number of Newton steps
required to solve the problem is O(

√
nL). This is consistent with the complexity

bound derived in Section 10.6.

Exercises
3.1. (The next few exercises show how to construct new self-concordant barrier

functions from existing ones.) Let F (x) be a self-concordant barrier function
with parameter ν on the set S ⊂ �n. Suppose that x = Ay + b where A is
an n × m matrix, b is an n-vector, and y ∈ T ⊂ �m. Prove that

F̂ (y) ≡ F (Ay + b)

is a self-concordant barrier function on T with parameter ν. What assump-
tions on the set T are required?

3.2. Let Fi be a self-concordant barrier function on Si ⊂ �n with parameter νi

for i = 1, . . . , m, and let αi ≥ 1 be real numbers. Let S be the intersection
of the sets {Si }. Prove that

F (x) =
m∑

i=1

αiFi(x)
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is a self-concordant barrier function on S with parameter
∑

αiνi. What
assumptions on the set S are required?

3.3. Let Fi be a self-concordant barrier function on Si ⊂ �ni with parameter νi

for i = 1, . . . , m. Define

S = {x = (x1, . . . , xm) : xi ∈ Si } .

Prove that

F (x1, . . . , xm) =
m∑

i=1

Fi(xi)

is a self-concordant barrier function on S with parameter
∑

νi. What as-
sumptions on the set S are required?

3.4. Let F be a self-concordant barrier function on S. Use Lemma F.3 to prove
that the Newton direction for F at a point x must satisfy ‖pN‖x ≤ ν1/2 for
all x ∈ intS.

3.5. Prove that if F (x) is a self-concordant barrier function on S, then Fρ(x) is
self-concordant on S.

3.6. The goal of this problem is to prove Lemma 17.8. This is accomplished in
several stages. If ∇F (x)T(y − x) ≤ 0 then the result is obvious. Thus we
assume that ∇F (x)T(y − x) > 0.

(i) Let T be such that
{

x + t(y − x) ∈ S, for 0 ≤ t ≤ T ;
x + t(y − x) �∈ S, for t > T .

Prove that T ≥ 1.
(ii) Define φ(t) ≡ F (x + t(y − x)). Prove that

|φ′(t)| ≤
√

νφ′′(t).

(iii) Define ψ(t) ≡ φ′(t). Prove that ψ(t) > 0 and that

(−ψ−1(t))′ = ψ′(t)ψ−2(t) ≥ ν−1.

(iv) Use

−ψ−1(t) = −ψ(0) +
∫ τ

0

(−ψ−1(t))′dt

to prove that

ψ(t) ≥ νψ(0)
ν − tψ(0)

.

(v) Use the fact that ψ(t) is bounded on any sub-interval [0, T̄ ], for 0 <
T̄ < T , to conclude that

ν − T̄ψ(0) > 0 for all T̄ < T .

Use this to complete the proof of the lemma.
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3.7. Use the Implicit Function Theorem (see Section 9 of Appendix B) to prove
that (under the assumptions on the optimization problem made in this Sec-
tion) the path of minimizers x∗(ρ) is continuously differentiable and its deriva-
tive is

x′
∗(ρ) = −∇2F (x∗(ρ))−1c.

Hint: Differentiate (F.6) as a function of ρ.
3.8. The goal of this problem is to define a Phase-1 procedure to find an initial

pair (ρ0, x0) for the path-following method. Suppose that some initial guess
x̄ ∈ intS has been specified.

(i) Prove that x̄ minimizes the artificial barrier function

F̄ρ(x) ≡ ρdTx + F (x)

for ρ = 1 and d = −∇F (x̄). Hence (1, x̄) can be used as an initial pair
for a path-following method based on the artificial barrier function.

(ii) Prove that an initial point for the path-following method for the original
problem can be obtained by running the method in (a) in reverse, that
is, for ρ → 0.

3.9. Complete the proof of Theorem 17.12.
3.10. (The next few exercises describe a class of convex programs call semi-definite

programming problems.) Consider the optimization problem

minimize cTx

subject to A(x) ≥ 0,

where

A(x) = A0 +
m∑

i=1

xiAi

and where A0, A1, . . . , Am are n × n symmetric matrices. The inequality
A(x) ≥ 0 should be interpreted to mean that the matrix A(x) is positive
semi-definite. Prove that this problem is a convex programming problem.
We refer to this problem as a semi-definite programming problem.

3.11. Show that any linear program can be written as a semi-definite programming
problem. Hint: Use diagonal matrices {Ai }.

3.12. Let

A(x) = A0 +
m∑

i=1

xiAi.

Show that the problem of minimizing the maximum eigenvalue of A(x) can
be rewritten as a semi-definite program.

3.13. Let

A(x) = A0 +
m∑

i=1

xiAi.
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Prove that the function F (x) ≡ − log det A(x) is a self-concordant barrier
function for S = {x : A(x) ≥ 0 }. (Thus F (x) can be used to definite a
path-following method for a semi-definite programming problem.)

F.4 Notes
The results in this Appendix are adapted from the book by Nesterov and Ne-
mirovskii (1993) and from the lecture notes of Nemirovskii (1994).


